Matrix metalloproteinase 9 facilitates West Nile virus entry into the brain.

نویسندگان

  • Penghua Wang
  • Jianfeng Dai
  • Fengwei Bai
  • Kok-Fai Kong
  • Susan J Wong
  • Ruth R Montgomery
  • Joseph A Madri
  • Erol Fikrig
چکیده

West Nile virus (WNV) is the most-common cause of mosquito-borne encephalitis in the United States. Invasion of the brain by WNV is influenced by viral and host factors, and the molecular mechanism underlying disruption of the blood-brain barrier is likely multifactorial. Here we show that matrix metalloproteinase 9 (MMP9) is involved in WNV entry into the brain by enhancing blood-brain barrier permeability. Murine MMP9 expression was induced in the circulation shortly after WNV infection, and the protein levels remained high even when viremia subsided. In the murine brain, MMP9 expression and its enzymatic activity were upregulated and MMP9 was shown to partly localize to the blood vessels. Interestingly, we also found that cerebrospinal fluid from patients suffering from WNV contained increased MMP9 levels. The peripheral viremia and expression of host cytokines were not altered in MMP9(-/-) mice; however, these animals were protected from lethal WNV challenge. The resistance of MMP9(-/-) mice to WNV infection correlated with an intact blood-brain barrier since immunoglobulin G, Evans blue leakage into brain, and type IV collagen degradation were markedly reduced in the MMP9(-/-) mice compared with their levels in controls. Consistent with this, the brain viral loads, selected inflammatory cytokines, and leukocyte infiltrates were significantly reduced in the MMP9(-/-) mice compared to their levels in wild-type mice. These data suggest that MMP9 plays a role in mediating WNV entry into the central nervous system and that strategies to interrupt this process may influence the course of West Nile encephalitis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Icam-1 participates in the entry of west nile virus into the central nervous system.

Determining how West Nile virus crosses the blood-brain barrier is critical to understanding the pathogenesis of encephalitis. Here, we show that ICAM-1(-/-) mice are more resistant than control animals to lethal West Nile encephalitis. ICAM-1(-/-) mice have a lower viral load, reduced leukocyte infiltration, and diminished neuronal damage in the brain compared to control animals. This is assoc...

متن کامل

Mechanism of West Nile Virus Neuroinvasion: A Critical Appraisal

West Nile virus (WNV) is an important emerging neurotropic virus, responsible for increasingly severe encephalitis outbreaks in humans and horses worldwide. However, the mechanism by which the virus gains entry to the brain (neuroinvasion) remains poorly understood. Hypotheses of hematogenous and transneural entry have been proposed for WNV neuroinvasion, which revolve mainly around the concept...

متن کامل

Prevalence of West Nile Virus Infection in the Cities of Neka and Shiraz, Iran

Abstract Background and Objective: West Nile virus (WNV) is a member of the genus Flavivirus that can cause viral infections in human. This study aimed at detecting IgG antibodies against WNV in patients of two cities of Neka and Shiraz. Material and Methods: the participants were 46 possible WNV case from Neka (13 women and 10 men) and Shiraz (10 women and 13 men).  IgG assay was ...

متن کامل

Antiviral peptides targeting the west nile virus envelope protein.

West Nile virus (WNV) can cause fatal murine and human encephalitis. The viral envelope protein interacts with host cells. A murine brain cDNA phage display library was therefore probed with WNV envelope protein, resulting in the identification of several adherent peptides. Of these, peptide 1 prevented WNV infection in vitro with a 50% inhibition concentration of 67 muM and also inhibited infe...

متن کامل

CXCR4 antagonism increases T cell trafficking in the central nervous system and improves survival from West Nile virus encephalitis.

The migration of lymphocytes into the CNS during viral encephalitis is hindered by the blood-brain barrier (BBB) such that most infiltrating cells remain localized to perivascular spaces. This sequestration of leukocytes away from the parenchyma is believed to protect the CNS from immunopathologic injury. Infections of the CNS with highly cytopathic neurotropic viruses, such as West Nile virus ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of virology

دوره 82 18  شماره 

صفحات  -

تاریخ انتشار 2008